

ESTABLECIMIENTO DE UNA METODOLOGÍA PARA EL SEGUIMIENTO DEL POTENCIAL ECOLÓGICO VS. ESTADO TRÓFICO DE LOS EMBALSES DE LA CUENCA DEL EBRO

INFORME FINAL DEL EMBALSE DE CIURANA

ÁREA DE CALIDAD DE AGUAS CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

ESTABLECIMIENTO DE UNA METODOLOGÍA PARA EL SEGUIMIENTO DEL POTENCIAL ECOLÓGICO VS. ESTADO TRÓFICO DE LOS EMBALSES DE LA CUENCA DEL EBRO

PROMOTOR:

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

DIRECCIÓN DEL PROYECTO:

Vicente Sancho Tello Valls y María José Rodríguez Pérez

EMPRESA CONSULTORA:

Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia Estudi General

EQUIPO DE TRABAJO:

Área de Limnología, dirigida por Dr. Eduardo Vicente Pedrós, Catedrático de Ecología. Director del Estudio.

PRESUPUESTO DE LA ADJUDICACIÓN:

89.000,00€

CONTENIDO:

INFORME INDIVIDUAL DEL EMBALSE DE CIURANA

AÑO DE EJECUCIÓN:

2017

FECHA ENTREGA:

DICIEMBRE 2017

REFERENCIA IMÁGENES PORTADA:

Vista de la cola del embalse de Ciurana desde el punto de muestreo.

CITA DEL DOCUMENTO: Confederación Hidrográfica del Ebro (2017). Establecimiento de una metodología para el seguimiento del potencial ecológico vs. estado trófico de los embalses de la cuenca del Ebro. 212 págs. más anejos. Disponible en PDF en la web: http://www.chebro.es

El presente informe pertenece al Dominio Público en cuanto a los Derechos Patrimoniales recogidos por el Convenio de Berna. Sin embargo, se reconocen los Derechos de los Autores y de la Confederación Hidrográfica del Ebro a preservar la integridad del mismo, las alteraciones o la realización de derivados sin la preceptiva autorización administrativa con fines comerciales, o la cita de la fuente original en cuanto a la infracción por plagio o colusión. A los efectos prevenidos, las autorizaciones para uso no científico del contenido deberán solicitarse a la Confederación Hidrográfica del Ebro.

ÍNDICE

			Pagina
1.	INTR	ODUCCIÓN	7
2.		CRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE Ámbito geológico y geográfico	
	2.2.	Características morfométricas e hidrológicas	8
		Usos del agua Registro de zonas protegidas	
3.	TRA	BAJOS REALIZADOS	10
4.	DIAG	SNÓSTICO DE LA SITUACIÓN ACTUAL	11
	4.1.	Características físico-químicas de las aguas	11
	4.2.	Hidroquímica del embalse	
	4.3.	Fitoplancton y concentración de clorofila	15
	4.4.	Zooplancton	17
5.	DIAG	SNÓSTICO DEL GRADO TRÓFICO	20
6.	DIAG	SNÓSTICO DEL POTENCIAL ECOLÓGICO	21
Αl	NEXO	I. REPORTAJE FOTOGRÁFICO	

ÍNDICE DE FIGURAS Y TABLAS

ÍNDICE DE FIGURAS CORRESPONDIENTES A GRÁFICOS Y FOTOS

Figura 1. Volumen embalsado y salida durante el año hidrológico 2016-2017	9
Figura 2. Localización de la estación de muestreo en el embalse	10
Figura 3. Perfil vertical de la temperatura y pH	11
Figura 4. Perfil vertical de la extinción luminosa y oxígeno disuelto	12
Figura 5. Perfil vertical de la conductividad y de la materia orgánica disuelta cromofórica	13
Figura 6. Perfil vertical de la clorofila a	16
Figura 7. Vista de la presa del embalse y del punto de acceso	27
Figura 8. Vista de la cola del embalse	27
ÍNDICE DE TABLAS	
Tabla 1. Características morfométricas del embalse de Ciurana	8
Tabla 1. Concentración de los diferentes nutrientes analizados en las muestras integradas	14
Tabla 3. Estructura y composición de la comunidad de fitoplancton	15
Tabla 4. Composición detallada de la comunidad de fitoplancton	16
Tabla 5. Estructura y composición de la comunidad de zooplancton	18
Tabla 6. Composición detallada de la comunidad de zooplancton	19
Tabla 7. Parámetros indicadores y rangos de estado trófico.	20
Tabla 8. Diagnóstico del estado trófico del embalse de Ciurana	20
Tabla 9. Parámetros y rangos para la determinación del potencial ecológico experimental.	21
Tabla 10. Combinación de los indicadores.	22
Tabla 11. Diagnóstico del potencial ecológico del embalse de Ciurana	22
Tabla 12. Valores de referencia propios del tipo (VR _t) y límites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (RD 817/2015).	23
Tabla 13. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo	24
Tabla 14. Combinación de los indicadores.	24
Tabla 15. Diagnóstico del potencial ecológico (PEnorm) del embalse de Ciurana.	25

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse de Ciurana durante los muestreos de 2017 y la interpretación de los mismos, a efectos de proporcionar una referencia que facilite la consulta y explotación de la información obtenida.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una consulta ágil y rápida del documento.

En el **Anexo I** se presenta un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (verano 2017, correspondiente al año hidrológico 2016-2017).

En apartados sucesivos se comentan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidrológicos, fisicoquímicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Clasificación del "Potencial Ecológico experimental", tras la aplicación de los indicadores biológicos, propuestos en la MEMORIA DEL ESTUDIO, y fisicoquímicos, propuestos en la Directiva Marco del Agua.
- Clasificación del "Potencial Ecológico normativo", tras la aplicación de los indicadores biológicos y fisicoquímicos propuestos en la Directiva Marco del Agua.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geológico y geográfico

La cuenca vertiente del embalse de Ciurana se ubica en la zona de transferencia entre los Pirineos y el Sistema Mediterráneo. "La zona de transferencia" presenta fallas alpinas reactivadas y nuevas de la edad pliocena-cuaternaria de dirección NW-SE que afectan la terminación oriental de la Cuenca del Ebro. En esta región se sitúa la zona volcánica neógena-cuaternaria, la cuenca neógena de Empordà y la fosa plio-cuaternaria de la Selva.

El embalse de Ciurana se sitúa dentro del término municipal de Cornudella de Montsant, en la provincia de Tarragona. Regula las aguas del río Ciurana.

2.2. Características morfométricas e hidrológicas

Se trata de un embalse de pequeñas dimensiones y de geometría en "V".

La cuenca vertiente al embalse de Ciurana tiene una superficie total de 5990,76 ha.

El embalse tiene una capacidad total de 12 hm³. Caracterizado por una profundidad media de 14,1 m, y una máxima de 30 m.

En la tabla 1 se presentan las características morfométricas del embalse.

Tabla 1. Características morfométricas del embalse de Ciurana

Capacidad total N.M.N.	12 hm³
Superficie inundada	85 ha
Cota máximo embalse normal	460 msnm,

Tipo de clasificación: 10. Monomíctico, calcáreo de zonas no húmedas, pertenecientes a ríos de cabecera y tramos altos.

Se trata de un embalse monomíctico, ubicado en zonas no húmedas de cabecera y tramos altos de geología calcárea. En el momento del muestreo, la termoclina se sitúa entre los 6 y los 12 metros de profundidad. El límite inferior de la capa fótica se encuentra a 15 metros de profundidad determinado mediante medidor fotoeléctrico, mientras que el valor estimado mediante el Disco de Secchi fue de 14,5 m.

El tiempo de residencia hidráulica media en el embalse de Ciurana para el año hidrológico 2016-2017 ha sido de 9,45 meses.

En la figura 1 se presentan los valores diarios de salida media del embalse correspondientes al año hidrológico 2016-2017.

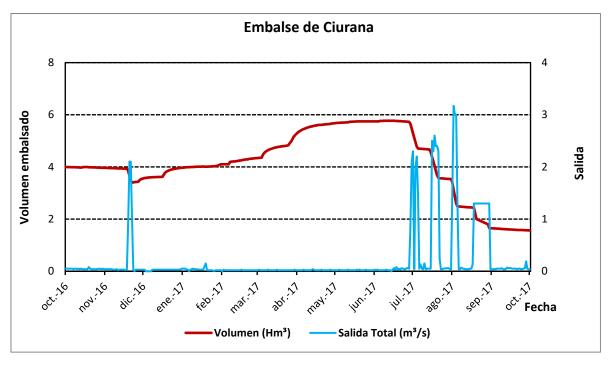


Figura 1. Volumen embalsado y salida durante el año hidrológico 2016-2017.

2.3. Usos del agua

Las aguas del embalse se destinan principalmente al abastecimiento a la población y los regadíos. También se usan para actividades recreativas: navegación (a remo y vela con condiciones poco favorables, no es apto para motor).

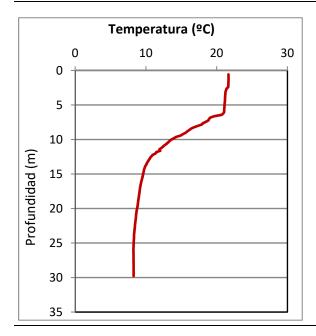
2.4. Registro de zonas protegidas

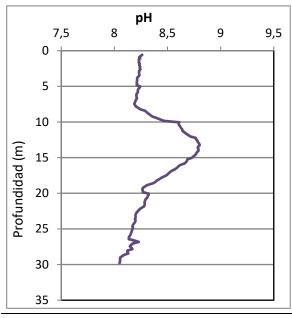
El embalse de Ciurana forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, en la categoría de zonas de uso recreativo (zona de baño "Cornudella de Montsant") y zonas de protección de hábitats o especies (Punto Red Natura 2000: LIC y ZEPA "Muntanyes des Prades, ES5140008).

3. TRABAJOS REALIZADOS

Para acometer la caracterización del embalse se ha ubicado una estación de muestreo en las inmediaciones de la presa (ver figura 2). Se ha completado una campaña de muestreo el 6 de Junio de 2017, en la que se midieron *in situ* los parámetros físico-químicos y la transparencia en la columna de agua, se tomó una muestra de agua integrada para los análisis químicos y se realizaron muestreos de fitoplancton y zooplancton.

Figura 2. Localización de la estación de muestreo en el embalse.

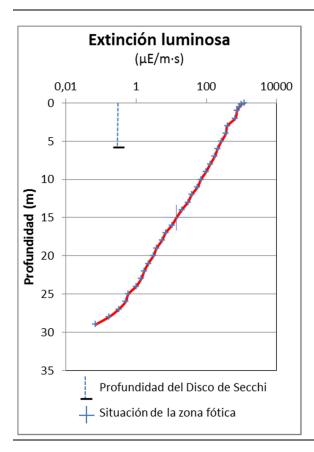



4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL

4.1. Características físico-químicas de las aguas

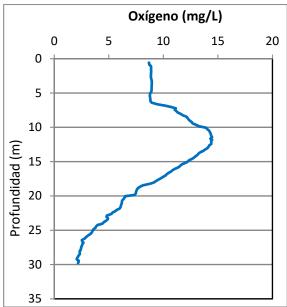
De los resultados obtenidos se desprenden las siguientes apreciaciones:

La temperatura del agua oscila entre los 8,27 °C en el fondo y los 21,67 °C -máximo registrado en superficie-. En el momento del muestreo (Junio 2017) la termoclina se sitúa entre los 6 y los 12 metros de profundidad.



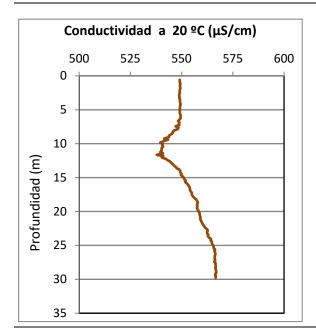
El pH del agua en superficie es de 8,25, y en el fondo de 8,05, mínimo hipolimnético. El valor máximo se sitúa al final del metalimnion, con un pH de 8,80 a los 13 m de profundidad.

Figura 3. Perfiles verticales de la temperatura y el pH.

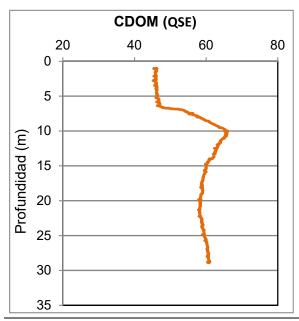


La transparencia del agua registrada en la lectura del disco de Secchi (DS) es de 5,80 m, lo que supone una profundidad de la capa fótica en torno a 14,5 metros. Muy similar a la medición hecha mediante la célula fotoeléctrica, que indica una profundidad de la capa fótica de 15 m.

La turbidez media de la zona eufótica (muestra integrada a 15 m de profundidad) fue de 2,04 UAF.



Las condiciones de oxigenación de la columna de agua alcanzan en el punto de muestreo una concentración media de 8,86 mg/L en el epilimnion y de 8,41 mg/L en el hipolimnion. No se han detectado condiciones anóxicas (<2 mg O₂/L).


Figura 4. Perfiles verticales de la extinción luminosa y el oxígeno disuelto.

La conductividad del agua es de 549 μ S/cm en la superficie y de 566 μ S/cm en el fondo. El valor mínimo se encuentra en el metalimnion, a 11,6 metros de profundidad, con una conductividad de 537 μ S/cm.

El CDOM del agua es de 46 QSE (equivalentes de sulfato de quinina) en la superficie y de 60 QSE en el fondo. El valor máximo de CDOM de 65 QSE se registra a 10 m de profundidad.

Figura 5. Perfil vertical de la conductividad y de la materia orgánica disuelta cromofórica.

4.2. Hidroquímica del embalse

De los resultados analíticos obtenidos en la campaña de 2017 en la muestra integrada, se desprenden los resultados de la tabla 2.

Tabla 2. Concentración de los diferentes nutrientes -analizados en las muestras integradas.

PARÁMETRO	UNIDAD	VALOR
PROFUNDIDAD CAPA FÓTICA	m	15,0
AMONIO	mg NH₄/L	0,092
FÓSFORO TOTAL	μg P/L	9,92
FÓSFORO SOLUBLE	μg P/L	0,82
NIO (NO ₃ + NO ₂)	mg N/L	0,02
NITRÓGENO TOTAL	mg N/L	0,26
SÍLICE	mg SiO₂/L	2,85
ALCALINIDAD	meq/L	3,16

4.3. Fitoplancton y concentración de clorofila.

En el análisis realizado se han identificado un total de 22 especies, distribuidas en los siguientes grupos taxonómicos:

BACILLARIOPHYCEAE	3
CHRYSOPHYCEAE	4
XANTHOPHYCEAE	1
CHLOROPHYCEAE	5
CYANOBACTERIA	2
CRYPTOPHYCEAE	5
DINOPHYCEAE	2

La estructura de la comunidad de fitoplancton se resume en la tabla 3 y la composición detallada en la tabla 4.

Tabla 3. Estructura y composición de la comunidad de fitoplancton.

PARÁMETRO	UNIDAD	VALOR	
N° CELULAS TOTALES n° cel/ml		3815	
BIOVOLUMEN TOTAL µm³/ml		762928	
Diversidad Shannon	n-Wiener	2,39	
CLASE PREDOMINANTE	(DENSIDAD)	Bacillariophyceae	
Nº células/m	I	1242	
ESPECIE PREDOMINANTI	E (DENSIDAD)	Cyclotella ocellata	
Nº células/m	I	1147	
CLASE PREDOMINANTE (I	BIOVOLUMEN)	Bacillariophyceae	
μm³/ml		494023	
ESPECIE PREDOMINANTE (BIOVOLUMEN)		Cyclotella radiosa	
μm³/ml		281950	

La concentración de clorofila fue de 1,68 μ g/L en la muestra integrada, cuya profundidad se ha señalado en la figura 6 con una línea roja. El perfil vertical realizado mediante fluorimetría muestra un máximo de 4,4 μ g/L a 15,5 metros de profundidad.

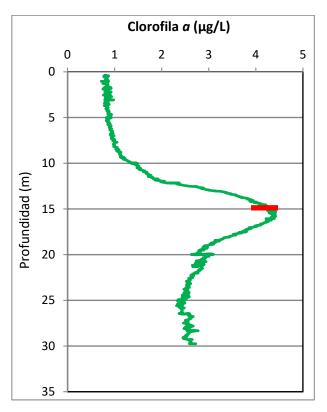


Figura 6. Perfil vertical de la clorofila a.

La composición de la población fitoplanctónica de la muestra integrada de la zona fótica indicando su abundancia y biovolumen, muestra los resultados de la tabla siguiente:

Tabla 4. Composición detallada de la comunidad de fitoplancton.

COD EMB LW	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	μm3/ml	(1 al 5)
	BACILLARIOPHYCEAE/CENTRALES/			
AULAGRAN0	Aulacoseira granulata			1
CYCLOCEL0	Cyclotella ocellata (Lindavia ocellata)	1.147,82	210.301,67	3
CYCLRADI0	Cyclotella radiosa (=Lindavia radiosa)	89,75	281.950,29	2
	BACILLARIOPHYCEAE /PENNALES/			
ACHNMINU0	Achnanthidium minutissimum (=Achnanthes minutissima)			1
DIATVULG0	Diatoma vulgaris			2
FRAGIGEN0	Fragilaria sp.	4,72	1.771,33	2
GYROACUM0	Gyrosigma acuminatum			1
NAVIRADI0	Navicula radiosa			1
NITZCLOS0	Nitzschia closterium			1
RHOPGIBB0	Rhopalodia gibba			1
	CHRYSOPHYCEAE			
CHRYOGEN0	Chrysochromulina sp.	1.133,65	36.276,91	1

COD EMB LVV	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	μm3/ml	(1 al 5)
CHRYCGEN0	Chrysococcus sp.	9,45	4.946,50	
CHRYPLAN0	Chrysolykos planctonicus	4,72	432,82	
KEPHPLAN0	Kephyrion planktonicum	9,45	474,86	
	SYNUROPHYCEAE			
MALLMINU0	Mallomonas minuta			1
	XANTHOPHYCEAE			
TRACLENT0	Trachydiscus lenticularis	56,68	5.342,22	1
	CHLOROPHYTA			
CARTEGEN0	Carteria sp.	4,59	11.817,42	1
CHLAMGEN0	Chlamydomonas sp.	14,17	2.544,97	1
ELAKGELA0	Elakatothrix gelatinosa	14,17	601,00	
KIRCCORN0	Kirchneriella cornuta	4,72	54,10	
MONODYBO0	Monoraphidium dybowskii	14,17	367,28	1
OOCYBORG0	Oocystis borgei			1
OOCYMARS0	Oocystis marssonii			2
SCENLINE0	Scenedesmus ellipticus (=Scenedesmus linearis)			1
SPHAPLAN0	Sphaerocystis planctonica			2
	CYANOBACTERIA			
APHASGEN0	Aphanocapsa sp.	944,71	494,65	2
SPIRUGEN0	Spirulina sp.	0,42	52,48	
	CRYPTOPHYCEAE			
CRYPEROS0	Cryptomonas erosa	4,72	11.290,60	2
CRYPMARS0	Cryptomonas marsonii	9,45	5.381,79	
CRYPOBOV0	Cryptomonas obovata			1
CRYPTGEN0	Cryptomonas sp.	42,51	19.944,27	
PLAGLACU0	Plagioselmis (=Rhodomonas) lacustris	259,80	21.588,90	1
PLAGNANN0	Plagioselmis nannoplanctica (=Rhodomonas lacustris var. nannoplanctica)	42,51	1.543,31	
	DINOPHYCEAE			
CERAHIRU0	Ceratium hirundinella	2,51	124.828,77	2
PERICINC0	Peridinium cinctum	0,42	20.922,05	1
	TOTALES BACILLARIOPHYCEAE	1.242,30	494.023,30	
	TOTALES CHRYSOPHYCEAE	1.157,27	42.131,09	
	TOTALES XANTHOPHYCEAE	56,68	5.342,22	
	TOTALES CHLOROPHYTA	51,83	15.384,77	
	TOTALES CYANOBACTERIA	945,13	547,13	
	TOTALES CRYPTOPHYCEAE	358,99	59.748,87	
	TOTALES DINOPHYCEAE	2,92	145.750,82	
<u> </u>	TOTALES ALGAS	3.815,12	762.928,19	

Nota: Entre paréntesis se cita el anterior nombre de la especie.

Clases de	% de
abundancia	presencia
1	<9
2	10-24
3	25-60
4	61-99
5	>99

4.4. Zooplancton

En el análisis de zooplancton de las muestras del embalse de Ciurana se han identificado un total de 14 especies, distribuidas en los siguientes grupos taxonómicos:

- 3 Cladocera
- 4 Copepoda
- 7 Rotifera

La estructura y composición de la comunidad de zooplancton se resume en la tabla 5:

Tabla 5. Estructura y composición de la comunidad de zooplancton.

PARÁMETRO	PARÁMETRO UNIDAD		VALOR		
PROFUNDIDAD m		15,0			
DENSIDAD TOTAL individuos/L		504,23			
BIOMASA TOTAL	μg/L	66,04			
Diversidad Sha	annon-Wiener		1,91		
CLASE PREDOMINA	ANTE (DENSIDAD)		Rotíferos		
individuos/L			432,50		
ESPECIE PREDOMINANTE (DENSIDAD)			Polyarthra dolichoptera		
individuos/L			235,38		
CLASE PREDOMIN	ANTE (BIOMASA)	Copépodos			
μg	/L	32,45			
ESPECIE PREDOMII	NANTE (BIOMASA)	Copidodiaptomus numidicus			
μg/L COLUMNA AGUA INTEGRADA (red vertical)			18,19		
			0 – 28 m		
CLADÓCEROS: 9,69 % COPÉPODOS: 33		3,44 % ROTÍFEROS : 56,87 %			

La composición detallada de la población zooplanctónica presente en la muestra cuantitativa de zooplancton indicando la densidad y biomasa, y el porcentaje de las especies presentes en la muestra integrada de la red vertical, se muestran en la tabla 6:

Tabla 6. Composición detallada de la comunidad de zooplancton.

CÓDIGO	COMPOSICIÓN	ABUNDANCIA	BIOMASA	PORCENTAJE
TAXÓN	ZOOPLANCTON	Ind./L	mg/L	(1 al 5)
	CLADÓCEROS			
BOSMLONG0	Bosmina longirostris			1
CERIPULC0	Ceriodaphnia pulchella	4,62	5,54	1
CHYDSPHA0	Chydorus sphaericus			1
DAPHLONG0	Daphnia longispina	0,77	2,92	1
DAPHPULI0	Daphnia pulicaria	0,58	2,19	1
DIAPMONG0	Diaphanosoma mongolianum			1
	COPÉPODOS			
COPINUMI0	Copidodiaptomus numidicus	6,92	18,19	2
CYCLABYS0	Cyclops abyssorum	0,19	0,48	1
CYCLLACU0	Cyclops cf lacustris			1
TROPPRAS0	Tropocyclops prasinus	0,19	0,16	1
CYCLOPFAM	Fam. Ciclopidae	58,46	13,62	2
	ROTÍFEROS			
ASCOOVAL0	Ascomorpha ovalis	1,54	0,10	1
ASPLPRIO0	Asplanchna priodonta	0,19	0,14	1
FILITERM0	Filinia terminalis	18,46	1,38	1
GASTSTYL0	Gastropus stylifer	3,08	0,62	1
KERACOCH0	Keratella cochlearis	6,15	0,31	1
POLYDOLI0	Polyarthra dolichoptera	235,38	12,00	3
POLYLUMI0	Polyarthra luminosa			1
SYNCKITI0	Synchaeta kitina	167,69	8,38	1
	Total Cladóceros	5,96	10,65	9,69
	Total Copépodos	65,76	32,45	33,44
	Total Rotiferos	432,50	22,94	56,87
Nata Cutus mané	Total	504,23	66,04	100

Nota: Entre paréntesis se cita el anterior nombre de la especie.

Clases de	% de
abundancia	presencia
1	<9
2	10-24
3	25-60
4	61-99
5	>99

5. DIAGNÓSTICO DEL GRADO TRÓFICO

Se han considerado los indicadores especificados en la tabla 7 para los valores medios en el embalse, estableciéndose el estado trófico global del embalse según la metodología descrita en la sección 5 de la MEMORIA DEL ESTUDIO.

Tabla 7. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (μg P/L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L) epilimnion	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cel./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO FINAL	< 1,8	1,8 - 2,6	2,6 - 3,4	3,4 - 4,2	> 4,2

En la tabla 8 se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final.

Tabla 8. Diagnóstico del estado trófico del embalse de Ciurana.

INDICADOR	VALOR	ESTADO TRÓFICO
P TOTAL	9,92	Oligotrófico
CLOROFILA a	1,68	Oligotrófico
DISCO SECCHI	5,80	Oligotrófico
DENSIDAD ALGAL	3815	Mesotrófico
ESTADO TROFICO FINAL	2,25	OLIGOTRÓFICO

Atendiendo a tres de los cuatro criterios seleccionados, (fósforo total (PT), concentración de clorofila *a* y transparencia (DS)) califican el embalse como oligotrófico. Mientras que la densidad algal determina el embalse como mesotrófico. Combinando todos los indicadores el estado trófico final para el embalse de CIURANA ha resultado ser **OLIGOTRÓFICO**.

6. DIAGNOSTICO DEL POTENCIAL ECOLÓGICO

a) Aproximación experimental (PEexp)

Se han considerado los indicadores especificados en la tabla 9, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado a) de la MEMORIA DEL ESTUDIO.

Tabla 9. Parámetros y rangos para la determinación del potencial ecológico experimental.

Indicador	Elementos	Parámetros	Bueno o	superior	Moderado	Deficiente	Malo
		Densidad algal (cel/ml)	< 10 ³		10 ³ -10 ⁴	10 ⁴ -10 ⁵	>10 ⁵
		Biomasa algal, Clorofila <i>a</i> (μg/L)	< 2,5		2,5-8	8,0-25	>25
		Biovolumen algal (mm³/L)	<	0,5	0,5-2	2-8	>8
Biológico	Fitoplancton	Phytoplankton Assemblage Index (Q)	> 3		2-3	1-2	<1
		Trophic Index (TI)	< 2,79		2,79-3,52	3,52-4,25	>4,25
		Phytoplankton Trophic Index (PTI)	ic > 3,4		2,6-3,4	1,8-2,6	<1,8
		Phytoplankton Reservoir Trophic Index (PRTI)	< 6,6		6,6-9,4	9,4-12,2	>12,2
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	<	6,6	6,6-9,4	9,4-12,2	>12,2
	INDICADOR BIO	DLÓGICO (1)	< 2,6		2,6 - 3,4	3,4 - 4,2	> 4,2
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7
Fisicoguímico	Oxigenación	Concentración O ₂ (mg O ₂ /L)	>8	8-6	6-4	4-2	<2
r ioiooquiiiiioo	Nutrientes	Concentración de PT (μg P/L)	0-4	4-10	10-35	35-100	>100
INDICADOR FISICOQUÍMICO (2)		Muy bueno	Bueno	ı	Moderado		
			< 1,6	1,6 - 2,4		> 2,4	

- (1) La valoración del indicador biológico se obtiene asignando la calificación del elemento de menor puntuación (fitoplancton o zooplancton) o peor calidad, según la metodología one out, all out.
- (2) La valoración del indicador fisicoquímico se obtiene asignando la calificación del elemento de menor puntuación o peor calidad, según la metodología *one out, all out*.

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico experimental final sigue el esquema de decisiones indicado en la tabla 10:

Tabla 10. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado	Indistinto	Moderado
Deficiente	Indistinto	Deficiente
Malo	Indistinto	Malo

En la tabla 11 se incluye el potencial indicado por cada uno de los parámetros e indicadores, así como la catalogación de la masa de agua según el potencial ecológico final.

Tabla 11. Diagnóstico del potencial ecológico del embalse de Ciurana.

Indicador	Elementos	Parámetros	Valor	Potencial
		Densidad algal (cel./ml)	3815	Moderado
		Clorofila a (µg/L)	1,68	Bueno o superior
		Biovolumen algal (mm³/L)	0,76	Moderado
	Fitoplancton	Phytoplankton Assemblage Index (Q)	3,56	Bueno o superior
Biológico		Phytoplankton Trophic Index (PTI)	3,96	Bueno o superior
		Trophic Index (TI)	2,09	Bueno o superior
		Phytoplankton Reservoir Trophic Index (PRTI)	7,08	Moderado
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	4,66	Bueno o superior
INDICADOR BIOLÓGICO			2	BUENO O SUPERIOR
	Transparencia	Disco de Secchi(m)	5,80	Bueno
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	8,41	Muy bueno
	Nutrientes	Concentración de PT (μg P/L)		Bueno
	INDICADOR FISICOQUÍMICO			BUENO
POTENCIAL ECOLÓGICO		BUENO		

b) Aproximación normativa (*PEnorm*)

Se han considerado los indicadores, los valores de referencia y los límites de clase B⁺/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas 12 y 13, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado b) de la MEMORIA DEL ESTUDIO.

Tabla 12. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (RD 817/2015).

Tine Flaments		Daućus stus	lu di sa dan	VD	B ⁺ /M	M/D	D/M
Tipo	Elemento	Parámetro	Indicador	VRt	(RCE)	(RCE)	(RCE)
		Diamaga	Clorofila a mg/m ³	2,00	0,211	0,14	0,07
Tipo 1	Fitoplancton	Biomasa	Biovolumen mm ³ /L	0,36	0,189	0,126	0,063
Проп	ripo i Filopiancion	Composición	Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
		Composicion	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
		Biomasa	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Time 7	Tipo 7 Fitoplancton	ыоттаѕа	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Про 7		0	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
T: 0	Fit l t	Biomasa	Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 9	Tipo 9 Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
	Tipo 10 Fitoplancton	Biomasa Composición	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Tim = 40			Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo Tu			Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Diamaga	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
	44 = 1	Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 11	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composicion	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Б.	Clorofila a mg/m ³	2,40	0,195	0,13	0,065
T: 10	F.,	Biomasa	Biovolumen mm³/L	0,63	0,175	0,117	0,058
Tipo 12	Fitoplancton		Índice de Catalán (IGA)	1,50	0,929	0,619	0,31
		Composición	Porcentaje de cianobacterias	0,10	0,686	0,457	0,229
		D:	Clorofila a mg/m³	2,10	0,304	0,203	0,101
Ti 40	Fit l t	Biomasa	Biovolumen mm ³ /L	0,43	0,261	0,174	0,087
Tipo 13	Fitoplancton		Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
		Composición	Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

Tabla 13. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE				
Indicador	Elementos	Parámetros	Bueno o	superior	Moderado	Deficiente	Malo
		Clorofila a (µg/L)	≥ 0,433		0,432 - 0,287	0,286 - 0,143	< 0,143
5		Biovolumen algal (mm³/L)	≥ 0,	362	0,361 – 0,24	0,23 - 0,12	< 0,12
Biológico	Fitoplancton	Índice de Catalán (IGA)	≥ 0,	982	0,981 – 0,655	0,654 - 0,327	< 0,327
		Porcentaje de cianobacterias	≥ 0,	,715 0,714 – 0,48		0,47 – 0,24	< 0,24
			Bueno o	superior	Moderado	Deficiente	Malo
INDICADOR BIOLÓGICO			> (0,6	0,4-0,6	0,2-0,4	< 0,2
			RANGOS DE VALORES				
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	>8	8-6	6-4	4-2	<2
	Nutrientes	Concentración de PT (µg P/L)	0-4	4-10	10-35	35-100	>100
				Bueno		Moderado	
INDI	INDICADOR FISICOQUÍMICO			1,6 - 2,4		> 2,4	

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo final sigue el esquema de decisiones indicado en la tabla 14:

Tabla 14. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado	Indistinto	Moderado
Deficiente	Indistinto	Deficiente
Malo	Indistinto	Malo

En la tabla 15 se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico final (*PEnorm*) tras pasar el filtro del indicador fisicoquímico.

Tabla 15. Diagnóstico del potencial ecológico (PEnorm) del embalse de Ciurana.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCET	PEnorm	
			Clorofila a (µg/L)	1,68	1,55	1,38	Bueno o superior	
		Biomasa	Biovolumen algal (mm³/L)	0,76	1,00	1,00	Bueno o superior	
D: 17 :	F:		Media			1,19		
Biológico	Fitoplancton		Índice de Catalán (IGA)	0,05	1,001	1,03	Bueno o superior	
		Composición	Porcentaje de cianobacterias	0,07	1,00	1,00	Bueno o superior	
			Media			1,02		
Media global						1,10		
	INDICADOR BIOLÓGICO				2		BUENO o SUPERIOR	
Indica	ador	Elementos	Indicador	Valor			PEnorm	
	Tı	ransparencia	Disco de Secchi (m)	5,80			Bueno	
Fisicoquímic	0	xigenación	O ₂ hipolimnética (mg O ₂ /L)	8,41			Muy bueno	
	Nutrientes Concentración de PT (μg P/L)			9,92			Bueno	
INDICADOR FISICOQUÍMICO					2		BUENO	
POTENCIAL ECOLÓGICO PEnorm					BUEN	O o SUPI	ERIOR	

ANEXO I. REPORTAJE FOTOGRÁFICO

Figura 7. Vista de la presa del embalse

Figura 8. Vista del punto de acceso al embalse